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Abstract

The market for ductile cast iron as a substitute material increases every year. The material structural performance is
strongly dependent on the microstructure. Micromechanics can help in understanding the role played by the micro-
structure constituents as well as the effects associated to the shape of the spheroids, their density, surface roughness,
etc. The potential of application for micromechanics modeling can be further increased if features such damage
mechanics and residual stresses are incorporated. In this paper, a micromechanics modeling approach based on the unit
cell development has been developed paying particular attention to the role and the behavior of the constituents. Resid-
ual stresses, resulting from the cooling down to room temperature, have been demonstrated to be critical for an accu-
rate prediction of the non-linear behavior of the DCI in the early deformation range. As far as damage mechanics is
concerned, it has been demonstrated that voids nucleating from debonded spheroids are not sufficient to explain cat-
astrophic failure at the macroscale while the occurrence of additional ductile damage in the matrix material is the driv-
ing process for rupture in ferritic DCI.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Every year, ductile cast irons (DCI) find new fields of application, as steel substitute material, mainly as a
result of their good properties that, in most of the cases, are even better than those of low carbon steels.
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Nomenclature
D damage
D" active damage
D, initial damage
D, critical damage at failure
Ey initial Young’s modulus
E actual Young’s modulus for the damaged material
E, graphite Young modulus
E; meso-strain components
Fp damage dissipation potential
F, plasticity dissipation potential
Fy cell resulting reaction forces
Ly reference unit cell length
Y elastic damage strain energy release rate
So material constant
P pressure, hydrostatic part of the stress tensor
R actual cell radius
Ry initial cell radius
K isotropic hardening back stress
TF triaxiality factor
p total equivalent accumulated plastic strain under multiaxial state of stress
p" active total equivalent plastic strain accumulated under tension only
Dth plastic strain threshold under multiaxial state of stress
Pr plastic strain at failure under multiaxial state of stress (ductility)
Sy deviatoric stress tensor
o damage exponent
Eth damage strain threshold
& failure strain under uniaxial state of stress (TF = 0.333)
A plastic multiplier
v Poisson’s ratio
K isotropic hardening internal variable
Om hydrostatic stress
Oeq equivalent von Mises stress
2y meso-stress components

Castability, cast dimension stability, together with a relatively high ductility (up to 25% for ferritic grades)
are critical characteristics, especially from the economical point of view, for the use of DCI in the

applications.

DCI microstructure shows suitably dispersed graphite spheroids in the ferrous matrix, which can spread
from purely ferritic to perlitic microstructure according to the cooling rate and heat treatment. More re-
cently austempered DCI family has been also introduced in the market (Jenkins, 1984). The presence of
two distinct phases, i.e. particles embedded into a matrix, makes this material conceptually a “natural”
composite, (Labrecque and Cagné, 1998) for which the overall resulting properties at the macroscale can

be predicted by means of micromechanics analysis.
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Even though DCI technology has been developed since 1948, the number of papers addressing the pos-
sibility to accurately predict resulting macroscopic constitutive response from a computational point of
view, as well as constituents interactions and geometric related effects, today, is still very limited.

In most of the papers presented in the literature, DCI microstructure is schematized as simple voided ma-
trix for which Gurson-like constitutive modeling seems to perform well (Steglich et al., 1996; Zhang et al.,
1999; Berdin and Hausild, 2002; Liu et al., 2002). In this framework the role of spheroids is completely ne-
glected on the consideration that, due to the “soft’ nature of these particles, the contribution to the resulting
material stiffness is either limited or completely insignificant. In addition to this, the material in the microme-
chanical analysis is always assumed to be stress free at the temperature at which the study is performed, usu-
ally room temperature (RT), without any concern with the effective stress/strain state in the microstructure.

Micromechanics is a powerful computational tool that gives the resulting properties of the material at
the macro-scale, from known characteristics of the constituents and microstructure topology, through
the analysis of periodic representative volume element (RVE) or the development of a unit cell model
(UCM) (Adams and Crane, 1984; Allen and Boyd, 1993). This approach not only allows one to calculate
material response in both elastic and plastic regimes but, if damage mechanisms are accounted for, also to
predict the occurrence of catastrophic failure under varying loading conditions and triaxiality stress states.
Micromechanics approach has been widely used to predict macroscale constitutive behavior of composites.
Hashin and Shtrikman (1963) and Hashin and Rosen (1964) derived the upper and lower bound for the
elastic constants using energy variational principles. Aboudi (1989) derived a micromechanics framework
for periodic cells able to predict both elastic and inelastic behavior. More recently, Sun and Vaidya (1996)
investigated the problem related to the application of periodical boundary conditions in predicting shear
moduli. Today, micromechanics approach largely relies on finite element method (FEM) since non-linea-
rities in the constituents behavior can be easily accounted for as well as temperature changes, plasticity,
damage, etc. Bonora et al. (1994) and Bonora and Ruggiero (2004a) developed a unit cell based approach
to predict constitutive response of unidirectional metal matrix (SiC/Ti-15-3) laminates emphasizing the
importance to incorporate in the simulation the manufacturing process and the damage mechanics.

The role of the manufacturing process is critical for those composites in which the interface bond be-
tween the matrix and the reinforcement is mechanical. In these materials, the matrix shrinks around the
reinforcement due to the thermal expansion coefficients mismatch during the cooling phase down to the
room temperature. Similar situation occurs for the DCI. Slightly below the eutectic temperature
(=1150°C) matrix and eutectic nodules are created as a matter of fact simultaneously. Below this temper-
ature, the number (i.e. nodule counts), the dimension and shape of the nodules are remaining practically
constant. Thus, the resulting interface between the nodule and the matrix, which has a a-thermal expansion
coefficient at least one order of magnitude higher than that of the graphite, develops according to the cool-
ing path and the rate.

Starting from these considerations, a micromechanical methodology for DCI based on unit cell analysis
has been developed. The study addresses manifold aspects which have critical effect on the effective predict-
ing capabilities of UCM, such as the damage mechanism for the matrix type, the role of the residual stresses
and strain resulting from the cooling down process, the spheroid effective shape and its constitutive re-
sponse, the effect of stress triaxiality on the expected ductility. The results of this extensive research have
been organized in three papers: in the present one the proposed UCM methodology is applied to purely
ferritic DCI. Here, a continuum damage mechanics (CDM) model for the ductile matrix is developed
and the damage parameters have been identified. In Part II, (Bonora and Ruggiero, 2004b), the proposed
approach is applied to purely perlitic DCI, for which local approach to fracture has been used to predict
brittle fracture and the associated experimental scatter. In Part III, (Bonora and Ruggiero, 2004c), the
methodology have been applied to ferritic—perlitic DCI highlighting the competition, between ductile
and brittle fracture in the ferritic and perlitic phase respectively, which drives the overall material response
and performance.
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The present work has been organized as follows: in Section 2 the UCM development is discussed and
details of the finite element modeling are given; in Section 3, the constitutive modeling of the constituents
is analyzed with particular attention to the graphite nodule response; in Section 4, the damage mechanisms
in the DCI mesostructure and the related failure models are discussed; in Section 5, the results of a para-
metric study finalized to investigate the effects associated to the cooling phase modeling, the cell choice,
constituent modeling, and damage induced effects, are given and compared with experimental data avail-
able in the literature. Finally, in Section 6, the principal outcomes of this work are summarized in the
conclusions.

2. Unit cell model

A number of possible unit cell models can be developed according to the material microstructure. As far
as concerns materials with included spherical particles, similarly to Brocks et al. (1996), it is assumed that
particles are homogeneously dispersed in the matrix material and the microstructure can be assumed to be
periodic of hexagonal micro-cell units, which are approximated by circular cylinder as depicted in Fig. 1.
From this, 2D axisymmetric unit cell FEM model can be developed simply meshing half of the cell only, for
symmetry reasons.

For the axisymmetric cell, the principal true strains are given, at the mesoscale, by:

Ess = In (1 +ﬁ—f)

g (1)
Eypy=E;=I (g)
where the cell volume change is given as:
V-V
Ey = 7 = Ey +2En (2)
0

Similarly, meso-stresses are defined averaging the reaction forces, F;, along the cell boundary over the
deformed cell face areas.

Fig. 1. Microstructure simplification and meso-scale unit cell model definition.
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The equivalent von Mises stress, together with the hydrostatic pressure and stress triaxiality (triaxiality
factor, TF) definitions are given as follows:
Z‘eq = |233 - le‘
220+ 233
3 (4)
Z‘eq 3 |233_le|

P:
TF =

In the axisymmetric formulation, as well as plane stress, the stress triaxiality expression is independent
on the material Poisson ratio.

The UCM has been modeled with finite element method using four node, isoparametric, and arbitrary
quadrilateral element written for axisymmetric applications. As this element uses bilinear interpolation
functions, the strains tend to be constant throughout the element. The spheroid and the matrix have been
simulated as separated deformable bodies. Finer mesh has been used for the matrix material. The reference
Cartesian x-axis is the axisymmetry axis (Z) while the y-axis is the radial one (R). Fixed displacement
boundary conditions have been applied to the bottom (Z-axis) and left side (R-axis) respectively. Plane-
remain-plane conditions have been applied to the top and right side of the cell via tying on the appropriate
node degrees of freedom. The master node, at the top right cell corner, is used to apply the prescribed

| | MsC>
R TOP ‘ master node
VY VY VYVVYVVYYY YV Y YYYYVVYYYYY
f;ffljr.'rlif’r’i////// =
T 1 i L i L L i z v v
h_
1 =
1 <
- [~ =
L Ml =
=1 /’ fer——— Q
A= ~ o
Ml
/-i—
/".;,
P_r::.'-
=
— ]
BOTTOM z

Fig. 2. DCI unit cell finite element mesh.
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displacement history and to record the resultant of cell reaction forces. Numerical simulations have been
performed with MSC/MARC2003 commercial finite element code. In Fig. 2, the reference finite element
mesh for the cell is given. Contact between the matrix and the spheroid may occur along the contact inter-
face. No friction has been considered at this time. No special interface elements or cohesive contact force
law has been prescribed. Contact may occur when the distance between nodes belonging to different bodies
becomes smaller than a prescribed value. Penalty based algorithms preventing penetration between bodies
have been used. Separation between bodies will occur when the separation traction exceeds the maximum
reaction force. Elastic plastic analyses have been performed using finite plasticity formulation, as well as
large displacement and Lagrangian updating. True stress—true strain at mesoscale has been determined
according to Eq. (1), (3) and (4).

3. Constituents thermo-mechanical behavior and modeling

The development of an accurate UCM relies not only on the correct recognition of the material periodic
microstructure, but also on the capability to infer the appropriate material constitutive models for both the
constituents and phases present in the cell.

Relatively to DCI, as mentioned in the introduction, this issue has been probably oversimplified in the
past published works, where the discussion on the effective graphite nodule properties has been, most of the
time, avoided asserting that, since graphite spheroids are known to be soft, no contribution is expected
from these on the material overall stiffness. This statement is only partially true and, at the same,
misleading.

As a matter of fact, graphite spheroid, if considered under the composite material conceptual frame-
work, is a type of reinforcement with negative effect on the overall properties, since it is known that the
stress—strain DCI response is of inferior quality than that of the matrix material alone. In addition to this,
spheroid hardness is at least half of that of the matrix, justifying the attribute of “soft” material.

However, treating the DCI as analogous to a simple voided matrix material is conceptually wrong for
the following reasons. Firstly, there are indications that suggests that graphite spheroids are nearly incom-
pressible under hydrostatic pressure and that can exhibit some structural resistance (Steglich et al., 1996).
This opposition to compressive state of stress causes local Poisson effects during loading that, in many
cases, cannot be neglected. This feature is confirmed by the fact that the DCI stress/strain response is better
that that of simply voided matrix. Secondly, it is known that DCI shows different stress—strain response
under tension and compression. This feature can be naturally explained, as it will be demonstrated later
in the paper, only if the nodule stiffness contribution is taken into account. Finally, the DCI yield strength
is directly related to the strength of the interface between the matrix and the spheroid; if the spheroid would
have no role the DCI yield strength should be exactly equal to the one of the voided matrix material.

As far as the authors are aware of, detailed information about the effective graphite nodule mechanical
behavior is still lacking in the published literature. The reported Young modulus values for the graphite
spheroid spread from few thousand of MPa up to 700 GPa that is the modulus of carbon in the diamond
form. In most of the cases it is tacitly accepted that nodules are made of graphite having the same mechan-
ical properties as those for bulk macroscopic graphite (IAEA, 1979).

At present, the debate about the real nature of the graphite spheroids and their forming process is still
open. Even though many theories have been proposed since 1965, today the more accredited model for the
nucleation of graphite spheroids is the so-called “melt-theory” (Scheil and Hutter, 1953). On the contrary,
the way in which spheroids grow is not completely clear yet. A commonly accepted idea is that the nodule
formation occurs by a growing austenite shell. The nodule grows in contact with the melt and is encapsu-
lated by austenite, and further growth of the nodule within the shell takes place by solid-state carbon dif-
fusion. Consequently the nodule growth is assumed to start from the center and to proceed by thickening of
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the carbon layers. Alternatively to this, radial structures found in well-polished samples have been showed
as “proof” of radial growth mechanism of nodules. In the opposite direction, Karsay and Campomanes
(1970) and Stadelmaier (1960), advocating the “bubble theory”, proposed that nodule growth starts at
the periphery and proceeds towards the centre. Even though these theories diverge, all of them agree on
the fact that the resulting nodule structure is a layered system similar to onionskin like arrangement.

Even the graphitic nature of the spheroids, always mentioned in the papers, is not always verified. As a
matter of fact, there are clear evidences that the non-graphitic carbon is found in both nodules and flakes.
For instance, Purdy and Audier (1984) found amorphous carbon in both nodule, flake and along the bor-
derline graphite-iron. Recently, Zhukov and Ramachandra (1994) reported on new diamond-like allotropic
forms of carbon, also found in cast iron. It can therefore be noted that all known carbon structures, ranging
from amorphous to diamond, can be found in cast iron depending on the applied cooling conditions.
Amorphous carbon is a very hard and strong compound while graphite is softer due to the crystalline order
and closer spacing between monoplanes and stacks. Consequently the choice of material mechanical prop-
erties to be used in the UCM needs some attentions since large variations are found in the referenced values,
according to the carbon type.

In some studies, performed in the 70s on graphite for nuclear applications, bulk graphite elastic—plastic
behavior with a tangent modulus approximately half of the Young modulus is also reported, (Tatsuo et al.,
1979). In the present work, preliminary finite element investigation showed no relevant effect due to the
non-linear behavior; consequently, the spheroid material has been assumed linear elastic. Thermal expan-
sion coefficient reported in the literature shows a variability usually ranging between 0.6 and 4.3 x 10 K™
and small variation with temperature. Here, it has been taken constant with temperature and equal to
2.5x 107K "', Therefore, the effective Young modulus for the spheroid material has been determined
though a parametric finite element analysis looking at the resulting effect on the predicted DCI structural
response (stiffness and yield strength) as described later in paper.

The matrix material may have different microstructures according to the cooling rate, carbon content
and heat treatment. In this paper, the attention has been limited to the case of pure ferritic matrix, which
is known to be ductile and to fail by plastic strain accumulation. The reference DCI material used in this
investigation is GGG40, in Table 1 the composition as well as the average reference properties are given.
Usually, this material has a well controlled microstructure with an average graphite diameter, d,, of 55—
60 um, a grain size of 30-60 um, a mean distance between spheroids, 4, of 50-100um and a shape factor,
£, not less than 0.84 (f'= 1, spherical shape).

In the simulation the ferrite has been modeled as elastic—plastic von Mises hardening material. The elas-
tic—plastic response at room temperature for the matrix material is given in Fig. 3 (Zhang et al., 1999). Tem-
perature effect on the Young modulus, yield strength and thermal expansion coefficient has been also taken
into account. In Table 2 the variation of each property as a function of temperature is also given. Missing
values at different temperatures have been linearly interpolated between upper and lower bounding values.

The ferritic material plastic flow curve at different temperatures has been assumed to be self-similar to
the one at room temperature, scaled with respect to the actual yield stress. On the In(c) — In(ep,) plot the
plastic flow data show a two-slope behavior characterized by two well defined hardening exponents, as
given in Fig. 4.

The knowledge of temperature effect on material properties is fundamental in order to determine the
residual stress/strain state which occurs in the material microstructure due to the cooling process from

Table 1
Composition and reference properties for purely ferritic GGG40 DCI

C[wt%] Si[wt%] Mn[wt%] Cu[wt.%] Pmax  Tensile strength  Yield stress [MPa]  Elongation [%0]
wt.%] [MPa]

GGG40 3.5-4.0 2.3-2.8 0.3 max - 0.05 420 280 15-22
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Fig. 3. True stress vs. true plastic strain for ferrite at RT (after Zhang et al., 1999).

Material properties for pure ferritic matrix as a function of temperature

Temperature (°C)

Young modulus (GPa)

Thermal exp. coeff. (mm/mm °C)

Yield strength (MPa)

25 210.0 1.25% 1073 297
250 153.8 1.50x 1073 194
500 102.5 1.60x 1073 137
750 41.4 - 96
900 20.0 - 70
1000 0.1 2.40%107° 60
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Fig. 4. Two-slope behavior on the In-In plot for the plastic flow curve for ferrite at RT.
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the liquid to room temperature. According to the melt theory the nodules are already present in the DCI
liquid phase. Assuming that the cooling from the liquid state of a well-inoculated iron occurs under equi-
librium conditions, the first solid to crystallize in a hypereutectic iron (%C or carbon equivalent,
CE = 4.5%) at the liquidus temperature is the graphite phase (point A, Fig. 5b). These graphite nuclei grow
until the temperature reaches the eutectic transformation range (point B, Fig. 5b). Below 1147°C, that is the
eutectic solidification lower bound temperature, the DCI is no longer in the liquid state, and the nodule
counts does no longer change while nodule dimension may vary due to carbon solid diffusion processes,
associated to the transformation of the austenite in ferrite, which theoretically may occur down to the
eutectoid reformation temperature. In Fig. 5a, the schematic Fe—C binary diagram is given showing both
the major transformation boundaries and the associated phases and microstructures. The right-hand pic-
ture shows a close-up of the corresponding region of interests for the cast iron ternary diagram.

As far as the microstructure and the unit cell development are concerned, it can be reasonably assumed
that below 1000 °C spheroids are completely formed both in number (i.e. C weight percentage content) and
dimensions. Since at this temperature solidification has completely occurred, stress free condition can then
be assumed for the elementary cell. Thus, residual stresses at the interface can be simply estimated simulating
the cooling phase from 1000° to room temperature. Elastic—viscoplastic behavior of the matrix material, in
the temperature range between 500 and 1000°C, can affect the resulting state of stress at the matrix-
spheroid interface. In order to model the associated effects, time dependent material properties, as well as
time dependent deformation processes, such as creep, should be part of the analysis. In that case, the deter-
mination of the evolution with time of the unit cell boundary conditions becomes a very challenging task.
DCT ferritic grades are usually obtained with a two-stage ferritizing annealing process, which also includes
austenization at 920-940°C for 1-4h; cooling in the furnace to 720-740°C and soaking at this temperature
for 1-4h; slow cooling in the furnace to 600-620°C and further cooling in air. This process, as other heat
treatments, has the major effect to relief the macroscopic residual stresses (Holden, 1995) resulting from
rapid or differentiated cooling in the material, while microscopic residual stress induced by the thermal
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Fig. 5. (a) Schematic Fe-C binary phase diagram and ternary diagram for ductile cast iron. (b) Point A, graphite first solidification;
point B, completation of graphite nuclei main growth phase.
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expansion coefficient mismatch between the nodule and the matrix remain confined in the microstructure.
Recently, Agrawal et al. (2003), investigated the thermal stress distribution in two-phase co-continuous com-
posites using neutron diffraction technique and they found that the residual microstresses distribution
around the Al,O, particles can be fairly well predicted using rate independent finite element modeling, sim-
ulating the temperature jump from the so-called effective processing temperature. Similarly, Ismar et al.
(2001), this time using rate dependent material constitutive modeling, found that, at least in continuous fiber
reinforced metal matrix composite, the processing cooling rate does not have a robust effect on the resulting
macroscopic material stress—strain response, while it is strongly affected by the processing temperature jump
and constituent CTE mismatch that drive the onset inelastic yielding during the cooling process. In the pre-
sent work a time independent approach has been used and the viscous effects associated to a given cooling
rate have not been considered. Here, the attention has been focused mainly on the stress states that inevitably
result from the thermal coefficient expansion (CTE) mismatch in the two phases.

4. Constituents failure mechanisms and damage modeling

Failure at the macroscale is the resulting action of the evolution of irreversible processes that occur at the
material microscale. As far as DCI is concerned, macroscopic failure can be ascribed to the progressive
damage of each of its constituent phases. From a mesoscopic point of view, damage can occur as:

e spheroid rupture;
e ductile damage in the ferritic matrix;
e spheroid—matrix debonding

These basic micromechanisms of failure usually take place in the material according to a clear sequence that
is controlled by the strain level superimposed on the RVE.

4.1. Spheroid fracture

Fracture mechanics investigation, performed on bulk reactor graphite, confirms the brittle nature of
graphite for which fracture instability occurs for fracture toughness values lower than 1.0 MPam'/?. Graph-
ite tensile strength reported in the literature ranges from 20 to 30 MPa for the bulk graphite (measured on
smooth round specimen with a diameter 2.5-30mm) to 1.5-3.0 GPa for graphite fiber (average diameter
7 um). Consequently, spheroid fracture can be investigated using either a maximum stress fracture criterion
or a Weibull stress based probabilistic approach. As far as concerns this latter approach, Brocklehurst and
Kelly (1979) found for the probability of failure for bulk graphite, given in the form,

el (2)]

a Weibull exponent of m = 16 and a scale stress value of ¢y =22 MPa.
4.2. Ductile matrix damage

Damage in the ductile matrix occurs as a result of the accumulation of inelastic deformation. Since the
ferritic matrix is ductile, microvoids may nucleate both at the grain boundaries and at the secondary small
particle inclusions. The growth of these voids is driven by the level of plastic deformation and the stress
triaxiality which is the result of the local multiaxial state of stress, induced by the spheroid stress concen-
tration action, and the overall stress triaxiality eventually induced by geometry changes at the macroscale.
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This damage process may be accurately described using continuum damage mechanics (CDM) ap-
proach. In 1985 Lemaitre, continuing the early work initially developed by Kachanov, proposed a contin-
uum mechanics conceptual framework for ductile damage in metals. Here, the damage accounts for the
resulting detrimental effects, which result from the numerous irreversible processes that occur in the micro-
structure under straining, on the mesoscopic material constitutive response. Consequently, the approach is
not restricted to one single specific process, such as microvoids nucleation and growth, but it accounts for
all resulting effects associated to the damage processes (microcrack forming, secondary smaller void nucle-
ation, particle breaking, etc.) and their mutual interaction.

One of the key assumptions of CDM is the existence of damage dissipation potential similarly to plas-
ticity theory. In the last decades, a number of damage models have been proposed in the literature assuming
different form for the damage dissipation potential. In most of the cases these models were specific for some
class of metals only and limited to simple uniaxial loading only. In 1997 Bonora proposed a new CDM
model capable to describe different damage evolution with strain in different classes of metals using a un-
ique damage dissipation potential. The model exhibits a number of important features such as: a limited
number of damage parameters each having a clear physical meaning, transferability of the damage param-
eters from specimen to structure, correct accounting of stress triaxiality effects, the possibility to incorpo-
rate strain rate and temperature effect as well as complex load path involving reversal plastic flow.

One of the key difference with respect to other standard CDM formulations is that the effective stress
definition does not apply to the material yield function since it is impossible to experimentally separate
material hardening and damage softening, consequently the proposed model does not show the localization
problems that strongly constrain other formulations involving softening. Much more detailed discussion
about this issue can be found elsewhere (Pirondi and Bonora, 2003).

Under the assumption of isotropic damage and isotropic hardening material, the set of constitutive equa-
tions for the damaged material can be summarized as follows:

(a) the plastic and damage dissipation potentials are written as,

@ = Fp(0,K;D) + Fp(Y;p,D) = [0eq — f(K;D)] + Fp(Y; p,D) =0 (6)
where f{R;D) is the macroscopic material plastic flow and Fp is the damage dissipation potential defined as,
1/ Y\* S | (Dy—D)7
Fo— = (-2 . . 7
P 2( %) 1-D oo @

(b) total strain tensor decomposition,

& = & + &) (8)

1

(c) elastic strain tensor,

l+v oy Vo O
— _r S
“%T"FE 1-D E1-D% ©)
(d) total equivalent plastic strain rate tensor,
. OF 2308y
&= L= (10)
J 60}] 2 Ocq
(e) plastic hardening rate (plastic multiplier),
. OF .
k=—-J—L=)=p (11)

0K
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Egs. (10) and (11) are those for standard plasticity while the kinetic law of damage evolution is given by:

: — ; a1 pT
D+:_;LaF7D:a.M. Om -(Dcr—D+)T-1?— (12)
oY In(er/em) Oeq pt
with
P\ 2 1A%
f<aeq):3<l+\))+3(1—2\))<geq) (13)

that accounts for stress triaxiality

Pt =2 H{f (0n/0w)) (14)

is the active equivalent plastic strain that accumulates in tension only, while the effective active modulus is
given by,

E= E(1 =D H(f(0m/0eq))) (15)

0 om/oeq <0

16
1 0m/0q = 0 (16)

H{f(onow)) = {
The formulation requires the identification of the following four damage parameters: &, that is the damage
threshold strain at which damage processes initiate; &, that is the theoretical strain to failure under constant
triaxiality (TF = 0.333); D, is the critical damage at which complete failure occurs and « is the damage
exponent that defines the shape of damage evolution curve with strain. These parameters can be easily iden-
tified in uniaxial tensile test as discussed in Bonora (1999).

As far as concerns the present investigation, damage parameters for the ferrite matrix have been taken
equal to those for ARMCO iron (Bonora and Milella, 2002) and given in Table 3.

4.3. Matrix—spheroid debonding

Debonding between the matrix and the included spheroid occurs when the applied stress overcomes the
residual stress at the interface resulting from the cooling process. The easiest way to account for this dam-
age mechanism in the simulations is to model the cooling phase. This approach will not require any arbi-
trary interface strength model. The strength of the interface is mainly function of the thermal expansion
coefficient mismatch and almost insensitive to the relative difference in the matrix—spheroid stiffness. From
the damage point of view the complete particle debonding is analogous to sudden activation of an initial
porosity in the matrix material constitutive response. In the literature, DCIs have been modeled as porous
solid, which behaves as Gurson-like material. Here, material failure is caused by the growth and coales-
cence of these initial mesovoids. Conversely, there are clear experimental evidences that DCI failure is
caused by the development of ductile damage in the matrix material that fails by smaller microvoids nucle-
ation and growth underling the need to account for this mechanism, (Liu et al., 2002). Thus, the possibility
to correctly account for the debonding process is critical in the accurate prediction of both macroscopic
DCI yield strength and the slope of the hardening tangent modulus.

Table 3
Damage parameters for ferrite

&th ér Dcr o

0.0037 0.5 0.45 0.3
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5. Numerical results

The UCM described in the previous section has been used to investigate a number of aspects related to
the nature of the contact between the spheroid and the matrix, the spheroid stiffness, the role of stress his-
tory resulting from the cooling down to RT and damage induced effects.

Finite element results have been compared with experimental data available in the literature for a
GGG40 DCI. Experimental stress—strain data reported by Kohout (2001), Berdin et al. (2001) and Zhang
et al. (1999) for the same DCI have been collected showing a very good agreement and limited experimental
scatter. Since at large strain the DCI response is dominated by the ferrite behavior, data in the early near
yield regime are needed in order to appreciate the differences in the constituents modeling. To this purpose,
the experimental work performed by Kohout (2001) is of particular interest since stress—strain data in the
strain range below 0.1% are given.

5.1. Matrix—spheroid bonding and residual stresses effect

Firstly, the effective role played by the cooling down process has been verified. In Fig. 6, the stress—strain
response, obtained with the UCM without the simulation of the cooling phase (that means stress free at RT
condition) is given for two choices of the graphite Young modulus (£,) and compared with the experimen-
tal data. The stress free condition at RT makes the UCM response independent of the graphite Young
modulus, since the spheroid is practically completely debonded. The only expected difference is in the lat-
eral contraction during uniaxial loading. As shown in Fig. 6, the difference in stress of the two calculates
stress—strain curve is merely appreciable and less than 3% in stress. The comparison with the experimental
data shows substantial differences in the linear stress—strain range, a higher predicted modulus, and lower
than measured yield strength.

Kohout (2001) pointed out the impossibility to define a unique Young modulus for DCI due to almost
continuous variation of the stress—strain slope even though in the early deformation range (<0.05%). At the
same time, he highlighted the difficulty to conventionally define a yield strength for the cast iron and as-
cribed this non-linear behavior to the stress concentration induced by the spheroid-void shape. Conversely,
simulation of stress free at RT UCM, or alternatively voided matrix UCM, shows only a well defined linear
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Fig. 6. Comparison of the UCM response and experimental data for GGG40: FEM response is given for two graphite modulus values
(15 and 300GPa) in the case of stress free at RT (no residual stresses resulting from the cooling down phase).



1414 N. Bonora, A. Ruggiero | International Journal of Solids and Structures 42 (2005) 1401-1424

trend in the stress—strain response with a Young modulus of 167 GPa + 0.0195 (standard error), with a cor-
relation coefficient R = 0.9997 and a standard deviation SD = 0.526, that is in agreement with the theoret-
ical upper bound value of 170 GPa obtained for a cylindrical cell with a spherical void.

The role of the residual stresses and the bond type on the overall stress—strain response is given in Fig. 7.
Here, three reference cases have been investigated and compared: (a) simple voided matrix (no spheroid),
(b) perfectly matrix bonded spheroid (no debonding is allowed), (¢) spheroid bonded to the matrix by the
residual stress. In all three cases the cooling phase has been simulated. The two extreme cases, case A and B,
show almost the same stiffness. This is mainly due to the fact that in case B, the residual stresses are frozen
in the cell but cannot activate any debonding process. In case A, the residual stresses are zero since the sim-
ple voided cell can contract freely. The difference in the resulting yield stress is clearly due to the graphite
stiffness and the induced stress triaxiality for the case B. On the contrary, case C shows lower stiffness and
yield strength. Here, the non-linearity in the elastic range response starts to be visible. In Fig. 8, the calcu-
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Fig. 7. Matrix-spheroid bonding effect: all cases account for the cooling down to RT phase. In case B, glued, no debonding can occur
during the entire deformation process.
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two graphite stiffness values: full symbol, 375GPa; hollow symbol, 100 GPa.
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lated angular distribution of the normal and shear stress component along the contact interface, at RT, is
also given, for two graphite Young’s modulus values, showing a zero shear and almost uniform compres-
sion state of stress with a maximum around 40°-45°, approximately. Here, the amplitude of the normal
contact stress at the interface seems to be independent from the graphite stiffness for values sufficiently high
to oppose some resistance to the matrix thermal contraction. From a computational point of view, the nor-
mal stress along the interface becomes more and more oscillating, with an upper bound value close to
500 MPa approximately, as the graphite stiffness is progressively reduced. This behavior is an intrinsic char-
acteristic of the penalty method used in the contact algorithm involving deformable—deformable body con-
tact. Consequently, these values for the residual contact stresses should be taken as indicative. If an average
reference value is taken from the oscillating distribution, numerical simulations show that the magnitude of
the normal contact stress rapidly increases from 0 to 500 MPa approximately, for graphite stiffness values
ranging from 0 to 50 GPa. Further increases of the graphite stiffness do not result in an increase of the con-
tact stress that seems to reach a saturation value. On the contrary the oscillating feature of the contact stress
distribution becomes less pronounced. The oscillating distribution of the residual stresses at the contact
interface does not have any appreciable effect on the debonding process that occurs much later in the defor-
mation process when the unit cell has gone under extensive plastic deformation and local stress redistribu-
tion. Since the node separation along the contact interface occurs when the local normal stress exceed the
reaction force on the node in contact, this reference value is averaged on the elements of both bodies insist-
ing on the same node and, consequently, the eventual effects due to an oscillating feature of the contact
stress distribution are intrinsically smoothed.

5.2. Graphite stiffness effect

A parametric investigation on the overall UCM response varying the spheroid stiffness and incorporat-
ing the cooling down phase has been performed. In Fig. 9 the comparison of the stress—strain response for
E, =15, 150 and 450GPa is given. With the decrease of the graphite stiffness also the overall stiffness is
reduced as well as the reference yield stress at the 0.2% strain offset. It is important to observe that in
the strain range below the conventional value of 0.002, the stress—strain curve is not linear. A two-slope
behavior becomes more evident for low graphite stiffness values (i.e., 15GPa). Here, it is worth to be noted
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Fig. 9. Graphite stiffness effect on the predicted DCI stress—strain curve incorporating the cooling phase.
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that the initial slope, for strain values lower that 0.05%, is slightly steeper than that found for intermediate
graphite stiffness values (i.e., 100-150 GPa).

In order to investigate this feature, the predicted DCI initial local tangent (do/0¢) variation with the
graphite stiffness has been investigated. In Fig. 10, the two slope behavior for E, = 90 GPa is clearly visible
(hollow symbols). Here, the linear fit gives an initial DCI stiffness £ = 144 GPa that drop down to 90 GPa at
20MPa (¢ = 0.015%) approximately. In the same plot, the evolution of the slope break point, at which the
first slope change occurs, is also given (black dots) together with the associated graphite stiffness. It is inter-
esting to observe that increasing the graphite stiffness the first yield stress is reduced with a minimum at
10MPa (¢ = 8.0 x 10~°) approximately for E, =40GPa. For further increases of the graphite stiffness,
the first yield stress jump up to values in the range 40 MPa (¢ = 3.0 x 10~%). In Fig. 11, the evolution of
the initial (first slope) and the dominant (second slope) DCI stiffness as a function of the graphite Young
modulus is given. Here, the predicted initial DCI modulus drops from the upper bound value of 167.8 GPa,
specific of the simple voided matrix (no spheroid), down to a minimum value of 117 GPa for E, = 45GPa.
Increasing the graphite spheroid Young modulus the resulting DCI stiffness increases again reaching the
upper bound value for E, = 1000GPa, approximately. Similarly, the DCI dominant stress—strain slope
has a sharp drop down to 60 GPa for E, below 15GPa, while for higher graphite stiffness values it increases
again. This plot indicates that there are potentially two values of the graphite Young modulus for which the
resulting predicted DCI stiffness is the same. GGG40 ductile cast iron has a very well controlled microstruc-
ture and shows stiffness in the range of 148—155GPa. For these values, the two possible graphite Young
moduli are: 5-30GPa and 300-375GPa. The lower stiffness value has to be excluded since the expected
DCI stiffness is observed for an initial limited strain range and then drops to lower values as given in
Fig. 12, where the comparison with the experimental data is given. This latter result confirms that the
graphite nodules have to have a stiffness value of the order of 300-375 GPa. These values may be apparently
in contrast with the DCI nodule Young modulus measurements, in range of 15+ 5GPa obtained by
Dierickx et al. (1996) using nano-hardness indentation test. These low values can be explained taking into
account that indentation is performed on cut nodules that, as a consequence of the onion like structure
mentioned above, would offer scarce resistance to the peeling action of the indenter.

In summary, if the residual stresses resulting from the jump in temperature from 1000 °C, approximately,
down to the RT, are accounted for in the numerical simulation of the unit cell, the DCI predicted stress—
strain curve is nonlinear even at very low strain values, as confirmed by the experimental found in Kohout
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Fig. 10. Two-slope behavior in the early DCI stress—strain curve: hollow symbols, E, = 30 GPa; solids symbols, show the evolution of
the slope break point (here indicated as initial yield strength) as a function of the graphite Young modulus.



N. Bonora, A. Ruggiero | International Journal of Solids and Structures 42 (2005) 1401-1424 1417

180

4, voided matrix IimiL value‘ ‘

T
&
= —e— 1" slope
= —o—2" slope |
3
E 100
(=]
5
o 80
>
Qo
o 604 Predicted graphite
- = stiffness range
40

— . —— . . v .
1] 100 200 300 400 500 600 70O 800 900 1000
Graphite modulus [GPal

Fig. 11. Predicted initial DCI Young modulus as a function of the graphite stiffness.

300

® exp.data (after|Kohout, 2401]

)),/
_—

E= 375 GPa

250
—

200

150 - / E,=125GPa

2] /,é---'emﬁsaepa

50

True stress [MPa]

]
1 Eoq=153 GPa

0 T
0.0000  0.0005 00010  0.0015 0.0020 0.0025 0.0030

True strain

Fig. 12. Comparison of the stress—strain curve, predicted for the two values of E; and the experimental data.

(2001). At very low strain, the two-slopes behavior of the DCI stress—strain curve becomes much more vis-
ible for low E, values. In the authors opinion, this two-slope behavior of the stress—strain curve, as well as
an higher initial tangent modulus for lower E, values, cannot be attributed to the oscillatory distribution of
the normal contact stress at the interface that only increases in value, but not varies in shape, during the
loading. Similarly, it has nothing to do with the occurrence of the debonding process that, even at low
E, values, usually occurs much later in the deformation process.

On the contrary, this behavior can be addressed to the different extension of the plastic strain shell that
develops, as a result of the cooling stage, around the spheroid. For low E, values (i.e. E, = 15 GPa) the
plastic strain is distributed along a thin layer, 25% of the spheroid radius thick approximately. Increasing
E,, the plastic strain develops in form of a diagonal band, as depicted in Fig. 13, frame A. For E, > 50GPa,
the plastic strain distribution does not longer increase in size but only slightly in its spatial gradient and this
is in accordance to the fact that for E, > 50 GPa the magnitude of the residual stresses at the contact inter-
faces do not longer increase with increasing values of E,. The presence of different plastic volumes modifies
the cell overall stiffness and, consequently, the resulting stress—strain curve predicted for the material.
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Confirmation of the effective presence of a plastic strain distribution around the spheroid and its extension
could be experimentally verified by etching techniques.

5.3. Damage modeling

Damage effect and development have been investigated looking at both debonding and ductile damage
in the ferrite matrix. As stated in the previous section, two main damage mechanisms take place in the DCI
microstructure under straining. Firstly, nodule debonding from the matrix occurs as soon as the applied
external load is strong enough to recover the compressive residual state of stress along the interface.
Numerical investigation shows that, at the end of the cooling down phase, a shell of yielded matrix material
surrounds the nodule, as given in Fig. 13 frame A. The debonding starts to occur well before reaching of the
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macroscopic DCI yield strength, at 0.25% approximately (Fig. 13, point A), and it ends immediately after
the overcoming of the yield stress at about 0.5% (Fig. 13, point B). From this point ahead, the DCI can be
conceptually considered as a voided matrix material with an initial porosity equal to the graphite nodule
volume content. In fact, if a partial unloading is performed at 0.005 strain, the measured Young modulus
found is 166.6 GPa that is very close, less that a 1 GPa in difference, to the that for the voided matrix mate-
rial. It is worth to underline here that even if fully debonded, the spheroids still oppose to the lateral con-
traction of the cell due to Poisson effect. In Fig. 13, the predicted stress—strain response for the DCI is given
in the strain range up to 0.03 together with the experimental data provided by Kohout (2001) and Berdin et
al. (2001). Here the evolution of plastic strain in the cell is given for the initial spheroid debonding, at the
completion of the debonding process and at 0.025 meso-strain. In this latter situation the matrix of the cell
has fully yielded, and the growth of spheroid nucleated void starts to become clearly visible. Together with
this damage mechanism, ductile damage in the matrix material starts to develop as soon as plastic defor-
mation initiates to accumulate in the cell. In Fig. 14, the predicted stress—strain curve up to failure is given
together with the experimental data. In addition, the damage maps calculated at various strain levels are
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Fig. 14. Comparison of the predicted stress—strain curve up to failure: damage evolution in the cell at different strain levels. The load
acts horizontally with respect to the showed cell.
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also given and related to the damage observed at the macroscale, Dpcy, as stiffness reduction of the DCI.
The presence of macrovoids nucleated from spheroids is the driving mechanism for the development of duc-
tile damage into the matrix. Here, the competition of plastic strain and local stress triaxiality determines the
condition for the initiation of a ductile crack, as a result of smaller voids nucleation and growth as shown in
Berdin et al. (2001), which causes the catastrophic failure in the material.

The comparison given in Fig. 14 shows the good agreement of the predicted response and the experimen-
tal data from a global point of view confirming that the damage model is capable to correctly predict the
onset failure. In order to have additional verification of the damage model performance, the resulting dam-
age effect, in term of Young modulus reduction at the cell level, has been compared with stiffness loss meas-
urements available in the literature for GGG40 DCI. To this purpose a number of partial unloading has
been simulated with the UCM in order to monitor the overall resulting stiffness loss with the increasing
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Fig. 15. Stiffness loss evolution in GGG40 DCI: comparison between the experimental data and the present damage model. Hollow
symbols indicate predicted damage due to the spheroid debonding only.
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strain level. In order to have an additional confirmation of the role of the damage developed in the matrix
material, the same procedure has been repeated in the case of debonding damage only. In Fig. 15 the com-
parison with experimental damage measurement is given. Probably the major outcome of this damage
investigation is that, according to the present results, the growth of macrovoids nucleated at the spheroids
is not sufficient to explain failure in DCI. As a matter of fact, it is true that these macrocavities are the first
to be generated in the material at very low superimposed strain levels but they can only have a limited
growth, which in turns results in a overall damage that practically remains almost constant for further in-
crease of strain. This is also confirmed experimentally by Liu et al. who observed in failed samples only a
limited growth of the macrovoids, without coalescence, surrounded by a high density of smaller voids in the
matrix material among the spheroids. Thus, the damage in the matrix seems to be the main cause for the
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Fig. 17. DCI predicted constitutive response under compression: comparison with tensile response. Frames A-C show damage
evolution in the cell for different compressive strain levels. The load acts horizontally with respect to the showed cell.
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additional stiffness loss observed in DCI. The comparison given in Fig. 15 shows how the present approach,
even though with some uncertainties on the effective ferrite damage parameters, is capable to provide a rea-
sonable upper bound for the expected damage evolution in the DCI. It has to be underlined that the exper-
imental scattered band given in Fig. 15 is also the result of other effects, such as spheroid shape irregularities
and clustering which directly influence the local stress triaxiality that is critical for evolution of damage
accumulation rate and that has not been incorporated in the present work. An additional verification of
the performance of the proposed approach is given in Fig. 16 where the lateral strain, due to Poisson effect,
is given as a function of the applied axial strain together with the experimental data measured by Steglich
et al. (1996). Once again, the prediction is in a very good agreement with the experimental data. The dif-
ferences in the strain to failure are mainly due to the elliptical shape of the nodules (Sf= 0.85) in the
GGG40 DCIT tested: the ellipticity is responsible for a higher local stress triaxiality that reduces the poten-
tial material ductility. Finally, the DCI constitutive behavior under compressive state of stress has been also
investigated. In Fig. 17 the comparison of the predicted material response under both tension and compres-
sion is given. Here, E, = 375 GPa has been used and damage modeling has been incorporated in both cases.
It is interesting to note that with the proposed approach a higher yield strength in compression than in ten-
sion is predicted in accordance with experimental evidences. Here, for most of the spanned deformation
range, damage is limited to the debonding of the spheroid from the matrix that is delayed with respect
to the tension case and occurs along the cell radial direction. Only later in the compression process, ductile
damage in the matrix, that according to the damage formulation used here can only accumulate under pos-
itive stress triaxiality conditions, starts to develop at the matrix—spheroid interface along the cell diagonal
as given in the frames A, B and C of Fig. 17.

6. Conclusions

In this paper a micromechanics approach has been used to investigate ferritic DCI. The proposed ap-
proach has two main features: (a) the residual stresses are accounted by simulating the cooling down stage;
(b) main driving damage mechanisms in the microstructure are identified and incorporated in the simula-
tions. In addition to other similar works, here the effective role played by the spheroids on the resulting
stress—strain curve has been pointed out. The parametric study performed allowed to determine an indirect
procedure for measuring the effective properties of the graphite nodules, that from micro and nano-
hardness tests are known to be soft but due to their microstructure are practically incompressible under
hydrostatic state of stress. The fact that the residual stresses in the cell are calculated by reproducing the
cooling down phase allows one to avoid providing arbitrarily matrix—nodule interface strength and to accu-
rately predict damage development as a result of the growth of cavities nucleated from debonded spheroid.
The present investigation demonstrated how the damage in the matrix due to plastic strain accumulation,
under the action of the external applied load and local geometry drive stress triaxiality, is critical to cor-
rectly predict not only global features such as the macroscopic strain to failure but also the evolution of
the stiffness loss in the material at mesoscale. This promising approach can be used to investigate other ef-
fects such as matrix constituents, multiaxial loading, spheroid ellipticity, etc. and used as tools for multi-
scale modeling approach.
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